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Abstract
We study the semiclassical propagation of squeezed Gaußian states. We do so
by considering the propagation theorem introduced by Combescure and Robert
(1997 Semiclassical spreading of quantum wave packets and applications near
unstable fixed points of the classical flow Asymptot. Anal. 14 377–404)
approximating the evolution generated by the Weyl-quantization of symbols
H. We examine the particular case when the Hessian H ′′(Xt ) evaluated at
the corresponding solution Xt of Hamilton’s equations of motion is periodic
in time. Under this assumption, we show that the width of the wave packet
can remain small up to the Ehrenfest time. We also determine conditions for
‘classical revivals’ in that case. More generally, we may define recurrences of
the initial width. Some of these results include the case of unbounded classical
motion. In the classically unstable case we recover an exponential spreading of
the wave packet as in Combescure and Robert (1997 Semiclassical spreading
of quantum wave packets and applications near unstable fixed points of the
classical flow Asymptot. Anal. 14 377–404).

PACS numbers: 03.65.−w, 03.65.Sq

1. Introduction

Localization of quantum states in phase space is a prerequisite in some semiclassical treatments
of quantum evolution. In the classically chaotic case, the width of an initially localized Gaußian
increases exponentially [1] up to the so- called Ehrenfest time TE , i.e. the time up to which
quantum dynamics can be approximated by classical dynamics. In the case of regular classical
motion it can be shown that this width grows algebraically in the semiclassical parameter h̄

up to TE .
In certain applications, it is necessary to propagate states semiclassically for long times.

This demands control of the width of the state. An example is the construction of quasi-modes
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proposed by Paul and Uribe [2]. One refers to a quasi-mode as a state ψ which is a solution
of a corresponding spectral problem of an operator Ĥ up to some small discrepancy δ, i.e.

‖Ĥψ − Eψ‖ < δ

which ensures, in the case of discrete spectrum, that there exist at least one eigenvalue of
Ĥ in the interval [E − δ, E + δ]. The approximation proposed by Paul and Uribe uses the
semiclassical propagation of coherent states over closed classical trajectories leading to the
well-known Bohr–Sommerfeld quantization rule in one dimension. The eigenvalues En of
the Hamiltonian Ĥ are given by the quantization condition∫

CEn

p dq = 2πh̄

(
n +

1

2

)
+ O(h̄2), n ∈ N, (1)

where the energy shells CE = {(p, q) : H(p, q) = E} are closed curves.
Certain examples suggest that there exist systems (other than the harmonic oscillator)

where the propagated width of an initial Gaußian remains small for long times. Such a
behavior is exhibited by the propagation of Gaußians generated by some perturbed periodic
Schrödinger operators such as the Wannier–Stark Hamiltonian

ĤWS(ε) = −h̄2

2
�x + V�(x) + εx

in the limit of small perturbations ε. Here V�(x) denotes a periodic potential with respect to a
lattice � ∼= Z

d . It is known that the band structure of the spectrum of the unperturbed operator
is preserved for small enough perturbations ε. Numerical studies [3, 4] show that an initially
localized Gaußian in momentum space defined on such an energy band apparently remains
Gaußian for long times. The evolving states carry out oscillations. The center of the Gaußian
can oscillate in position space describing the so-called Bloch oscillations [5]. Alternatively,
the width of the Gaussian can oscillate, whereupon the center remains fixed, describing the
so-called breathing modes. In both cases, the state returns to the initial state after an oscillation
period up to a small error.

We study the evolution generated by a class of operators on L2(Rd) defined as Weyl
quantization of classical symbols H(X) with the property

H ′′(Xt ) = H ′′(Xt+T ), ∀ t ∈ R, (2)

where Xt denotes the solutions to Hamilton’s equations of motion and H ′′(X) is the Hessian
of H with respect to X. In one dimension, the condition (2) is satisfied by bounded classical
motion or unbounded motion in a periodic potential. We particularly study the evolution
of initial Gaußian (or squeezed) states semi-classically, i.e. asymptotically as h̄ ↘ 0, when
t ↗ ∞. We focus our attention to the spreading of such wave packets.

In sections 1.1 and 1.2 we shortly review the semiclassical propagation of Gaußian
coherent states. In section 1.3 we give some known results on the validity of the approximation.
We then make, in section 2.1 and section 2.2, statements about the approximate Gaußian state
given by this semiclassical propagation using Floquet theory. These properties are then brought
back to the true evolution in section 3.

1.1. Preliminaries: semiclassical propagation of wave packets

We will work in the context of self-adjoint operators defined on L2(Rd) that are h̄-Weyl
quantization of symbols. To a smooth (C∞(R2d)) classical symbol b(X), i.e. a function on the
phase space T ∗

R
d ∼= R

2d , there corresponds an operator on L2(Rd), b̂ := Opw
h̄ [b], defined by

Opw
h̄ [b]ψ(x) := 1

(2πh̄)d

∫
R

2d

b
(x + y

2
, ξ

)
ψ(y) e

i
h̄
(x−y)ξ dy dξ.

2
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The following conditions will be assumed.

(i) The classical Hamiltonian H : R
2d → R is a smooth function.

(ii) H ∈ S(m), i.e. for all multi-indices α, β, there exists Kα,β > 0 such that∣∣∂α
p∂β

q H(p, q)
∣∣ � Kα,β(1 + |p|2 + |q|2) m

2 .

(iii) The corresponding classical equation of motion is given by

dXt

dt
= JH ′(Xt ),

where J is the symplectic unity

J :=
(

0 −11d×d

11d×d 0

)
,

and H ′ is the gradient of H with respect to X. Furthermore, we denote by �t
H : R

2d →
R

2d , X0 �→ Xt = �t
H (X0) the corresponding classical flow.

(iv) The h̄-Weyl quantization of H(X), Ĥ := Opw
h̄ [H ], is an essentially self-adjoint operator

on L2(Rd) and generates a unitary time evolution ∀ t ∈ R,

Û (t) : L2(Rd) → L2(Rd)

ψ(0) �→ ψ(t)

corresponding to the Schrödinger equation

ih̄
∂ψ

∂t
= Ĥψ, (3)

i.e. we will write Û (t) = e− i
h̄
Ĥ t .

The Weyl calculus also allows a representation of quantum mechanical wavefunctions on
phase space. This is given by the Wigner function of the state u ∈ L2(Rd),

W [u](p, q) :=
∫

R
d

u
(
q +

y

2

)
u

(
q − y

2

)
e

i
h̄
pydy. (4)

The Wigner function of a Gaußian defines a positive measure on phase space.

1.2. A semiclassical propagation theorem

With these assumptions we give a short summary of the method of semiclassical propagation
of coherent states introduced by Combescure and Robert [1]. Similar constructions have also
been considered in the past. See, e.g. Hagedorn [6, 7] and references therein.

The idea is to expand the exact Hamiltonian Ĥ along the classical flow generated by
the symbol H up to second order, whereupon the approximate time-dependent Hamiltonian,
Ĥ2(t), is the h̄-Weyl quantization of

H2(t, Y ) := H(Xt) + (Y − Xt)
T H ′(Xt) + 1

2 (Y − Xt)
T H ′′(Xt )(Y − Xt).

The propagation of normalized wavefunctions (squeezed states)1 of the form

ψ
(p,q)

B (x) := det(�(B))
1
4

(πh̄)
d
4

e
i
h̄
(pT (x−q)+(x−q)T B

2 (x−q)), B ∈ �d,

(
p

q

)
∈ R

2d (5)

by quadratic Hamiltonians is well known [8]. By �d , we mean the d-dimensional Siegel
upper half space, i.e. the set of symmetric d × d matrices with a positive, non-degenerate
imaginary part [8]. The quadratic form B describes the shape of the wave packet and it should

1 We will, with some lack of rigor, call these states Gaußian, coherent or squeezed without distinction.

3
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be underlined that it is independent of h̄. In its Wigner representation (see equation (4)) ψ
(p,q)

B

is a Gaußian centered around X = (
p

q

)
. This Wigner function is given by

W
[
ψX

B

]
(Y ) =

(
1

πh̄

)d

exp

(
−1

h̄
(Y − X)T G(Y − X)

)
where

G :=
(

�(B)−1 −�(B)−1(B)

−(B)�(B)−1 �(B) + (B)�(B)−1(B)

)
(6)

is independent of h̄.
The unitary evolution, Û2(t), generated by Ĥ2(t), acts on a squeezed state by translation

and metaplectic action, i.e.

Û2(t) = e
i
h̄
(t)T̂ (Xt)M̂(St ) (7)

where T̂ is the translation operator on R
2d i.e., ∀Y ∈ R

2d ,=:
(

ξ

q

)
and u ∈ L2(Rd) we have

T̂ (Y )W [u](Z) := e
i
h̄
(ξT x̂−qT p̂)W [u](Z)

= W [u](Z − Y ),

where we denote the momentum operator by p̂ and the position operator by x̂. The metaplectic
operator M̂(F ) is the quantization of a linear symplectomorphism on R

2d given by the
symplectic matrix F. These operators form a double-valued unitary representation2 of the
linear symplectomorphism of R

2d . St denotes the flow differential. The classical flow �t
H

is a symplectomorphism which ensures that the flow differential is a symplectic matrix.
Furthermore, St satisfies

dSt

dt
= JH ′′(Xt )St ,

(8)
S0 = 112d×2d .

In the prefactor of equation (7) we have used

(t) := W(t) + h̄µ,

where

W(t) :=
∫ t

0

(
pT

τ q̇τ − H(pτ , qτ )
)

dτ

is the action of the classical trajectory and µ is the Maslov index of the classical trajectory. We
have here expressed the solution of Hamilton’s equations in terms of the canonical variables(

pt

qt

)
:= Xt .

Acting with (7) on (5), one obtains at the time t a new Gaußian state e
i
h̄
(t)ψ

Xt

Zt
up to a

phase. The Gaußian centered around Xt in phase space and having a quadratic form Zt ∈ �d ,
is given explicitly by the group action [8]

Zt = St [Z0]

= (AtZ0 + Bt)(CtZ0 + Dt)
−1, Z0 ∈ �d,

2 A thorough description of the action of the evolution generated by quadratic operators on Gaußians and the
metaplectic representation can be found in [8].

4
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i.e. linear fractional transformation on �d . The matrix St is here written by means of the d ×d

blocks At, Bt , Ct and Dt , i.e.

St =
(

At Bt

Ct Dt

)
. (9)

The quadratic form of the Wigner transform of ψ
Xt

Zt
, is explicitly given by

Gt = (
S−1

t

)T
G0S

−1
t . (10)

The evolution of the approximate wave packet can be perceived as being generated by
rotation and scaling of the Gaußian profile in R

2d .
The difficulty of this scheme resides in the control of errors made by the approximation

of Û (t) in terms of Û2(t). We do not dwell on the details, but just state the result (for proof
and a thorough description see [1]). The approximation can be checked for all orders in h̄.
For this purpose, one defines the following approximating state

�(N)(t, x) := e
i
h̄
(t)

∑
0�j�N

h̄
j

2 πj

(
Xt,

x√
h̄

, t

)
ψ

Xt

Zt
(x),

where πj (Xt ,
x√
h̄
, t) are polynomials in x/

√
h̄ and Xt of degree smaller than or equal to 3j

with time-dependent coefficients.

Theorem 1 (Combescure, Robert). Under the above-mentioned assumptions and for an initial
Gaußian state ψ

X0
Z0

centered in the phase space representation at X0 ∈ R
2d , for every N ∈ N

there exists C < ∞ such that ∀ h̄ ∈ (0, h̄0], h̄0 > 0,∥∥Û (t)ψ
X0
Z0

− �(N)(t)
∥∥ � CNh̄

N+1
2 t e3γ t (11)

where 0 � γ < ∞ is the Lyapunov exponent of the classical motion.

We recall that a Lyapunov exponent is a measure of the exponential stability of the
solutions of a differential equation upon change of initial conditions. In the case of classical
motion, this is given by the Lyapunov exponent defined as

γ := max
k

[
lim
t→∞ sup

(
ln(sk(t))

t

)]
(12)

where sk(t) are the singular values of St . The Lyapunov exponent γ hence satisfies

‖St‖HS < c0 eγ |t | (13)

where c0 < ∞ is a positive constant. We denote by ‖M‖HS =
√

tr(M†M) the Hilbert–Schmidt
norm of the matrix M. Hermitian conjugation is denoted by M† and transposition by MT .

1.3. Ehrenfest time and spreading of wave packets

It is customary, in this context, to define what is known as the Ehrenfest time. The latter is
a time scale up to which the above approximation is valid. We define the Ehrenfest time,
denoted TE(h̄), as the maximal time up to which

• the error
∥∥Û (t)ψ

X0
Z0

− e
i
h̄
(t)ψ

Xt

Zt

∥∥ remains small,
• the exact state remains localized.

5
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The latter ensures that the approximation retains a physical meaning, i.e. the above
classical approximation makes no sense if the state does not remain localized.

The total width of the semiclassically evolved Gaußian is

σt (X0; h̄) := �x2(h̄, t) + �p2(h̄, t) = h̄

2
tr(Gt), (14)

where we have used the variance

�x2 = 〈
e

i
h̄
(t)ψ

Xt

Zt
, x̂2 e

i
h̄
(t)ψ

Xt

Zt

〉
L2(Rd )

− 〈
e

i
h̄
(t)ψ

Xt

Zt
, x̂ e

i
h̄
(t)ψ

Xt

Zt

〉2
L2(Rd )

,

and similarly for the momentum operator.
From equation (10) one obtains that

σt � σ0‖St‖2
HS.

By theorem 1, there will exist a constant c1 such that∥∥Û (t)ψ
X0
Z0

− e
i
h̄
(t)ψ

Xt

Zt

∥∥ � c1

√
h̄t e3γ t .

The time scale for which the errors are small is thus algebraic in h̄ if γ = 0. In the generic
case, the errors remain small for logarithmic times in h̄.

With this result, the errors

�(t) := 〈Û (t)ϕ0, ŝ(Û (t)ϕ0)〉L2(Rd ) − 〈Û2(t)ϕ0, ŝ(Û2(t)ϕ0)〉L2(Rd ) (15)

for propagating observables ŝ can be approximated explicitly. Of particular interest to us is
the width operator ŝ := Opw

h̄ [|Y |2]. One can characterize the times for which the error �(t)

is small, e.g. �(t) = O(h̄α) for some α > 0. Again, using the Lyapunov inequality (13) one
finds that the width of the approximate state is bounded by

σt (h̄) � c3 e2γ |t |, c3 > 0,

and the error remains O(h̄α) up to times of order | ln(h̄)|
6γ

. We may thus generically state that the
Ehrenfest time is

TE(h̄) ∝ | ln(h̄)|
6γ

. (16)

In the integrable case, implying γ = 0, the width grows like the square of the Hilbert–
Schmidt norm of the flow differential, i.e. at most polynomially in time. The error remains
small for times up to h̄− 1

2 . The Ehrenfest time thus is algebraic in h̄.
Our aim is to characterize the spreading of the approximate state for a more specific class

of classical motions.

2. Results

In addition to the conditions imposed on symbols H above (see section 1.1), we assume that
the Hessian H ′′(Xt ) is T-periodic, i.e.

H ′′(Xt ) = H ′′(Xt+T ), ∀ t ∈ R. (17)

We will also utilize the following definition.

Definition 1. A classical revival at a time t > 0 is the event that the approximate Gaußian
given above is the initial one up to a phase factor, i.e.

ψ
Xt

Zt
= eiαt ψ

X0
Z0

.

6
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2.1. Floquet theory

According to the Floquet theorem [9], any linear differential equation with continuous
T-periodic coefficients has a periodic solution of the second type, i.e. solutions which satisfy

f (t + T ) = υf (t), υ ∈ C,∀ t ∈ R.

In particular, the linear vector differential equation
d

dt
f = A(t)f,

where A(t) is continuous and satisfies A(t + T ) = A(t),∀ t ∈ R, has a fundamental matrix of
the form (see e.g. [10])

Ft = M−1 eLtMU(t), M ∈ GL(n, C),

where L is a diagonal matrix and U(t) is a T-periodic matrix. In general L can be brought
to block diagonal form. We will assume that L is diagonal. By definition, a fundamental
matrix is a full rank matrix whose columns satisfy the differential equation, i.e. the linear
combinations of the columns of the fundamental matrix span the full space of solutions of the
differential equation.

We will call the elements of L the Floquet exponents of the fundamental system.
The result of this section will be summarized in the following way.

Proposition 1. If H ′′(Xt ) is periodic and the Floquet exponents of St are purely complex
then the width of a Gaußian propagated semiclassically by Û2(t) will remain unchanged at
multiples of the smallest classical period T. Furthermore, if the classical flow is periodic then
classical revivals will occur.

Proof. Under the condition (17), Floquet theory states the existence of a fundamental Floquet
matrix for the linear differential equation (8),

St = M−1 e�tMFt , M ∈ GL(2d, C),

where e�t is the diagonal matrix with entries e2πλi
t
T , λi ∈ C, Ft has minimal period T, and we

have chosen

F0 = S0 = 112d×2d .

One directly concludes that

SkT = M−1 ekT �M, ∀ k ∈ Z

for multiples k of the classical period T.
Furthermore, the real fundamental matrix defined by St ∈ Sp(2d, R) has a unique polar

decomposition, i.e. there exists [8] an orthogonal matrix Qt ∈ O(2d) ∩ Sp(2d, R) and a
positive definite matrix Pt ∈ Sp(2d, R) such that

St = QtPt .

The width of the approximate squeezed state at the time t is (see equation (14))

σt (h̄) = tr
((

S−1
t

)T
G0S

−1
t

)
,

and since any symplectic matrix A satisfies [8]

A−1 = JAT J −1,

we can write by equation (10),

σt (h̄) = h̄

2
tr
(
QtPtJ T G0JPT

t QT
t

) = h̄

2
tr
(
PtJ T G0JPT

t

)
,

since Qt ∈ O(2d).

7
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We are hence confronted with two cases.

• Either SkT is orthogonal, i.e. PkT = 112d×2d ; this corresponds to

σkT (h̄) = h̄

2
tr(G0) = σ0(h̄), ∀ k ∈ Z.

The orthogonality of SkT implies that it has 2d singular values 1. It is furthermore similar
to ekT �(FkT = 112d×2d), which hence is unitary so the Floquet exponents 2πλi

T
are purely

complex or zero. By definition, the Lyapunov exponent of the classical trajectories is

γ := max
k

[
lim
t→∞ sup

(
ln(sk(Xt))

t

)]
,

where sk(t) are the singular values of the flow differential St , i.e. the eigenvalues of

F
†
t (M−1 et�M)†M−1 et�MFt = F

†
t Ft .

Noting that Ft is bounded (and periodic), we see directly that if

max
i

((λi)) = 0,

the classical motion is linearly stable.

• PkT �= 112d×2d , which corresponds to

σkT (h̄) = h̄

2
tr

(
PkT J T G0JPT

kT

)
> σ0(h̄),

since Pt ∈ Sp(2d, R) is strictly positive definite. This corresponds to the case when
(λi) �= 0, hence maxi (si) > 0. The classical motion is hence not linearly stable in this
case.

Furthermore, if the (purely complex) Floquet exponents are rationally dependent, there
exist some multiples

TR = nRT , nR ∈ Z,

of the classical period T such that the orthogonal transformation at times TR reduces to unity.
Indeed, if nR is the smallest common multiple of the denominators of the sequence {λi} defined
by the Floquet exponents, i.e.

λinR ∈ N,∀ i,

we find

M−1 e�TRM = M−1diag{e2π ini }M, ni ∈ Z, = 112d×2d .

The semiclassical approximation then is the initial Gaußian, if it is localized at the initial point
X0. This is the case if the flow is periodic. In this case we have a classical revival. �

Remark 1. Note that these revivals are purely classical in the sense that the conditions only
reflect properties of the classical motion and are hence independent of h̄.

Remark 2. If SkT is orthogonal, the approximate Gaußian profile will be the initial one at
classical periods. It is just rotated and translated in phase space.

8
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2.2. A uniform bound

We can further characterize the approximate state in the case when the Floquet exponents are
purely complex.

Lemma 1. If H ′′(Xt) is T-periodic and the Floquet exponents of St are purely complex then
the width σt (h̄) of a Gaußian state propagated by Û2(t) satisfies the following uniform bound

σt (h̄) � Kσ0(h̄), ∀ t ∈ R. (18)

Furthermore, K := eκ , where κ is defined by

κ := 2T sup
t∈[0,T ]

‖JH ′′(Xt)‖HS.

Proof. We consider equation (8)
dSt

dt
= JH ′′(Xt)St

S0 = 11.

Starting at some initial time kT , k ∈ Z, St+kT satisfies the Grönwall inequality

‖St+kT ‖HS � ‖SkT ‖HS eκ ,∀ t ∈ [0, T ],

during a classical period T where

κ = 2T sup
t∈[0,T ]

‖JH ′′(Xt )‖HS.

Furthermore,

σt (h̄) = h̄

2
tr
(
StJ T G0J ST

t

)
= h̄

2
tr
(
G0S

T
t St

)
� h̄

2
|tr(G0)|‖St‖2

HS.

Hence

σt (h̄) � h̄

2
|tr(g0)|eκ , (19)

if St has purely complex Floquet exponents since in this case σ0(h̄) = σkT (h̄), according to
proposition 1.

We conclude with this choice that

σt (h̄) � Kσ0(h̄)

uniformly in time. �

If St is not orthogonal at the classical periods T, the latter bound takes the form

σt (h̄) � Kσ0(h̄) e2 maxi ((li ))|t |,
where li := 2πλi

T
are the corresponding Floquet exponents of St which is nothing else than a

Lyapunov inequality where maxi ((li)) plays the role of the Lyapunov exponent. Using the
fact that what we are approximating is the Hilbert–Schmidt norm of the flow differential one
can furthermore state the existence of a constant c4 > 0 such that

e2 maxi ((li ))|t |

c4
� σt (h̄) � c4 e2 maxi ((li ))|t |.

which determines the asymptotic behavior of the width in that case.

Remark 3. We note that the equality in equation (18) is reached if the classical period is
null, i.e. if the Hamiltonian has a constant Hessian H ′′(Xt ). This is satisfied by the harmonic
oscillator. The flow differential St is then an orthogonal matrix for all times. It is well known
that the propagation is dispersion-less in this case.

9
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3. Discussion

Theorem 1 allows us to trace back the properties of the approximation to the exact state
U(t)ψ

X0
Z0

. According to the discussion in [1] (see also section 1.3), this can be done with

an error of order O(h̄α), α > 0 up to times h̄− 1
2 if the Floquet exponents have zero real part

(stable classical dynamics) and up to times | ln(h̄)|
6ν

, ν = maxi (li) otherwise (unstable classical
dynamics) as h̄ ↘ 0 and t ↗ ∞.

In the stable case, the approximate state remains localized ad infinitum if this state
remains localized between classical periods since the width of such a state is the same at
classical periods. We wish to stress that we have defined the classical period as the minimal
period of the Hessian H ′′(Xt ) which is not necessarily the period of the classical flow �t

H . An
example is classical motion in a one-dimensional periodic potential V� with energies E such
that

E > sup
x∈R

(V�(x)).

In such a case H ′′(Xt ) is periodic although the flow �t
H (X0) is not. Furthermore, the

approximation remains localized between classical periods if

κ = 2T sup
t∈[0,T ]

‖JH ′′(Xt )‖HS,

the exponent in equation (19), is small enough. We can hence state in that case, up to small
errors O(h̄α), localization of the exact propagation up to the Ehrenfest time TE ∝ h̄− 1

2 . Note
that the situation includes unbounded motion.

If the flow differential St is periodic, it is clear that the shape will be the initial one at
classical periods up to a small error. The resonance condition allows us to state that this will
also occur at some time if the flow differential is merely periodic of the second type and if
the Floquet exponents are rationally dependent and purely imaginary. We may state this since
the exact state remains localized and that our asymptotic considerations are valid as h̄ ↘ 0
and t ↗ ∞. The property extends also to the general stable case, i.e. in the case of rationally
independent Floquet exponents. Recall that the quadratic form Zt is given by linear fractional
transformation. In particular,

ZkT = (AkT Z0 + BkT )(CkT Z0 + DkT )−1

where we have used the notation of section 1.2. Since SkT ∼ e�kT which is unitary with
eigenvalues ei�i

2π
T = eλi

2π
T where �i ∈ R, there exist k-independent matrices ai ∈ C

d×d such
that ZkT can be viewed as the image of the vector � ∈ T

d with entries �i under the continuous
map

e : T
d → �d ω �→

d∑
i=0

ai e2π iωi .

Furthermore, the endomorphism

τ : T
d → T

d L �→ L + �,

where (Li + �i) is defined modulo 1, is known to be ergodic with respect to the Lebesgue
measure on the d-torus since the frequencies �i are rationally independent. In this notation we
have Z0 = e(0) = e(L(0)). From the ergodicity of τ on T

d we may state that for every ε > 0
there exists K ∈ Z such that ‖τK(L(0)) − L(0)‖ < ε. It follows that for every ε > 0 there
exists some n ∈ Z such that ‖e ◦ τn(0) − e(0)‖ < ε implying

∀ ε > 0, ∃n ∈ Z, ‖ZnT − Z0‖ < ε,

10
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i.e. ZkT is quasi-periodic. One concludes that the initial shape of the approximated state will
up to some small error reoccur at some multiple of the classical period if the Floquet exponents
of the flow differential are purely imaginary. We have again no à priori reasons to exclude
unbounded motion.

In the case of a periodic flow, we have localization at the initial point and the initial profile
(up to some small error) at classical periods. For bounded classical motion, those recurrences
define revivals at periods of the classical flow that have already been described [11] in the past.

We summarize our findings in the following theorem.

Theorem 2. Under the following assumptions

(i) H(X) satisfies the conditions of section 1.1
(ii) H ′′(Xt) is T-periodic and ν is the maximal real part of the Floquet exponents of the flow

differential, solution of equation (8),

and with κ := 2T supt∈[0,T ] ‖JH ′′(Xt )‖HS where K := eκ , we can make the following
statements up to O(h̄α), α > 0 as h̄ ↘ 0.

If K is small enough then the approximation described by theorem 1 will hold up to times | ln(h̄)|
6ν

and the approximate width of the state will behave like e2ν|t |.

In particular, if the Floquet exponents are purely complex or zero then the semiclassical
propagation described in theorem 1 will hold to times h̄− 1

2 . The width of the approximated
state will be bounded and recurrences will, up to small errors, take place at a multiple of T.
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